

RZ-003-1016008 Seat No. _____

Third Year B. Sc. (Sem. VI) (CBCS) Examination March - 2019

Chemistry: C - 603

(Physical Chemistry & Analytical Chemistry)
(New Course)

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) All questions are compulsory.

- (2) Figures on right hand side indicates marks.
- 1 (A) Answer following objective questions:
 - (1) Define: Activity coefficient.
 - (2) Define: Perfect Crystal.
 - (3) Write mathematical form of Debye Huckel limiting law.
 - (4) Write any one statement of 3rd law of thermodynamics.
 - (B) Answer in breif: (any one)
 - (1) Prove $f_{+} = \sqrt{Ka_{2/C}}$ for monovalent compound.
 - (2) Calculate change in entropy for the equation given below:

$$Na_{(s)} + \frac{1}{2}Cl_{2(g)} \rightarrow NaCl_{(s)}$$
 $E^{\circ} Na = 12.2 \ Cal / mol$

$$E^{\circ}_{Cl_{2}} = 53.28 \ \frac{Cal}{mol}$$
 $E^{\circ} NaCl = 17.3 \ \frac{Cal}{mol}$

- (C) Answer in detail: (any one)
 - (1) Write note on Residual entropy.
 - (2) Calculate ionic strength of 0.1 M KI and 0.02 M KBr solution (Ionization has been completed)
- (D) Write a note on Any One:
 - (1) Write a method to determine absolute entropy of solid, liquid and gas using 3rd law of thermodynamics.
 - (2) Write solubility method to determine activity coefficient.

2

3

5

2	(A)	Answer following objective questions:		
		(1) Define: Electrode.		
		(2) Give name of salt used in salt bridge.		
		(3) Quinhydron powder is a mixture of		
		(4) Write cell construction to determine ionic product		
		of water.		
	(B)	Answer in breif: (Any one)	2	
		(1) Calculate Ecell for the following cell at 25°C:		
		$Cu \begin{vmatrix} Cu^{+2} \\ 0.1 M \end{vmatrix} \begin{vmatrix} Cu^{+2} \\ 0.5M \end{vmatrix} Cu$ (R = 8.314 Jule)		
		(2) $Pt - H_{2(g)} \left H^{+}_{aq} \right \left \frac{Hg_2Cl_2}{1N KCl} \right Hg$, cell potential is		
		0.5164V at 25°C. Calculate pH of the solution		
		$[E_{Cal} = 0.280 \text{ V}]$		
	(C)	Answer in detail (Any one):		
		(1) Write note on glass electrode.		
		(2) Derive an equation to determine emf of amalgam		
		concentration cell.		
	(D)	Write a note on Any one:		
		(1) Derive an equaton to determine emf of concentration cell considering LJP end with transference.		
		(2) Explain determination of dissociation constant of weak acid by emf measurement.		
3	(A)	Answer following objective questions:		
		(1) Define Partial molal property.		
		(2) Give statement of Rault's law.		

(3)

Define: Precision.

How many significant numbers are present in 0.4050 ?

	(B)	Ans	wer in breif: (Any one)	2		
		(1)	Define Mean deviation and Mistake.			
		(2)	Describe Nernst's law with its equation.			
	(C)	Ans	wer in detail : (Any one)	3		
		(1)	Prove $\frac{\overline{\mathrm{d}\mu i}}{\mathrm{dT}} = -\overline{Si}$.			
		(2)	Write note on student – T test.			
	(D)	Writ	te a note on : (Any one)	5		
		(1)	What is called error? Write steps to minimize err	or.		
		(2)	Derive Gibbs Deuham equation with reference to chemical potential.			
4	(A)	(A) Answer following objective questions				
	· ,	(1)	Who have separated the extraction of green leave chromatography?	es by		
		(2)	Define stationary phase.			
		(3)	What is called developer ?			
		(4)	What is R _x Value ?			
	(B)	Ans	wer in breif : (Any one)	2		
		(1)	Write factors affecting R _f value.			
		(2)	Write uses of GLC.			
	(C)	Ans	wer in detail : (Any one)	3		
		(1)	Write method of preparation of TLC plate.			
		(2)	What is called ion exchange chromatography?			
			Write note on Anion exchange resins.			
	(D)	Writ	te a note on : (Any one)	5		
		(1)	Wrire note on paper chromatography.			
		(2)	Write note on column chromatography.			
RZ-003-1016008]			3	[Contd		

- 5 (A) Answer following objective questions: What happen when sodium nitroprusside is added to the **(1)** solution containing mixture CO_3^{-2} , SO_3^{-2} and S^{-2} ions. Write method of preparation of milk of magnesia. (2) (3) Define: pH. What is called potentiometric titration. (4) (B) Answer in breif: (Any one) 2 Explain separation of Cu^{+2} and Cd^{+2} ions using KCN. (1) (2) Draw only potentiometric titration curve of $Oxalic\ acid \rightarrow NaOH$
 - (C) Answer in detail: (Any one)

- 3
- (1) Discuss acid base titration by pH metry.
- (2) Explain separation of NO_3^- , NO_2^- and Br^- ions.
- (D) Write a note on : (Any one)

5

- (1) What is called redox titration? Discuss redox titration of $FeSO_4 \rightarrow K_2Cr_2O_7$ by potentiometry.
- (2) Discuss various methods of separation of

 Cl^- , Br^- and I^- ions.